

A Linear Limiter : A 11-GHz Monolithic Low Distortion Variable Gain Amplifier

Masahiro Muraguchi and Masayoshi Aikawa

*NTT Radio Communication Systems Laboratories
Yokosuka, Kanagawa 238-03 Japan*

Abstract

A new 11-GHz monolithic low distortion variable gain amplifier is proposed. The amplifier maintains high linearity up to the high input power level using variable negative feedback. The third-order intermodulation distortion ratio of this amplifier is improved more than 40 dB compared with conventional variable gain amplifiers under compressed gain conditions.

I. Introduction

Digital radio systems require wide dynamic range and high linearity for receivers. The dynamic range of a receiver is limited at the low signal-level end by its noise figure performance and at the high signal-level end by its linearity as defined by the system requirements.

Figure 1 shows a receiver block diagram for an 11 GHz-band digital microwave system. The system requires more than 50 dB carrier-to-third-order intermodulation distortion ratio (IMR) for each amplifier over a very wide input power range from -75 dBm to -5 dBm. Moreover, the amplifier block also requires more than 20 dB total gain compression at a maximum input power of -5 dBm since the input power level of the mixer should be equal to or less than -15 dBm for linear operation.

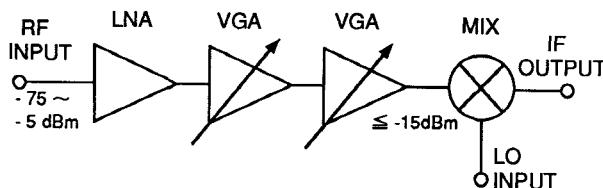
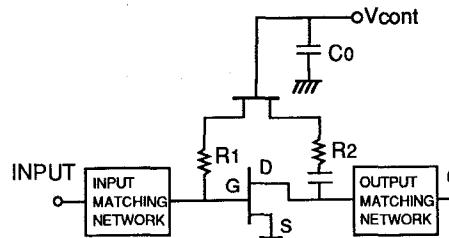
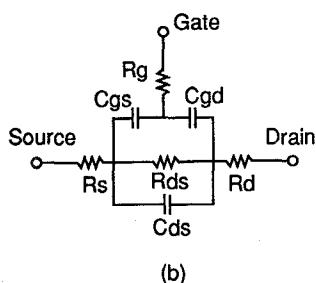


Fig. 1 Receiver block diagram for an 11 GHz-band digital microwave system.


Conventional variable gain FET amplifiers (VGAs) utilize the V_g or V_{dd} dependance of transconductance (gm). Cascode amplifiers and dual-gate FET amplifiers [1],[2], which are popular gain control amplifiers, belong to the drain-voltage controlled VGAs. The disadvantage of these types of VGAs is poor linearity under compressed gain conditions. This is why FET linearity degrades when the V_g or V_d is controlled to reduce the gm and gain. Furthermore, for the above system application, VGAs require considerable gain compression at a high input power level while the linearity of an FET becomes worse under such a large signal condition.

On the other hand, if an amplifier is composed of a variable attenuator and a small-signal amplifier unit, one can get rid of the above disadvantage. However, the dead loss or insertion loss of the attenuator in front of the amplifier unit directly degrades the noise figure of the amplifier. This results in a reduction of dynamic range because of the increase in low signal-level end.


II. New VGA configuration

In order to overcome the above problems, a new variable gain amplifier is proposed. The basic configuration of the amplifier is shown in Fig. 2 (a). The amplifier consists of an FET for amplification, an FET as a varistor, capacitors, fixed resistors, and matching networks. The amplifier employs a variable negative feedback configuration. It is known that negative feedback can significantly improve the linearity of amplifiers.[3] The gain can be changed by the control voltage (V_{cont}) of the FET varistor. When the varistor is controlled to a small resistance value, strong negative feedback occurs and the amplifier gain is compressed. Here, the RF signal amplitude at the FET gate terminal is reduced because

Q

(a)

(b)

Fig. 2 (a) Proposed configuration for a low distortion variable gain FET amplifier.
 (b) Equivalent circuit for an FET varistor.

the incident signal and feedback signal are combined in an out-of-phase manner at the FET gate terminal. This condition is considered equivalent to a small signal condition for the FET. Therefore, IMR improvement is expected under a compressed gain condition.

III. Circuit design

The equivalent circuit for the 11-GHz monolithic variable gain amplifier is shown in Fig. 3. The VGA uses two $0.3 \mu\text{m} \times 240 \mu\text{m}$ -gate FETs for amplification and one $0.3 \mu\text{m} \times 100 \mu\text{m}$ -gate FET as an FET varistor. An equivalent circuit of an FET varistor is shown in Fig. 2 (b). The FET varistor covers a resistance range from 30Ω to $10\text{k} \Omega$. The parasitic capacitances C_{gs} and C_{gd} of the FET varistor make the VGA unstable, especially at a high varistor resistance. Therefore, the capacitor C_0 and fixed resistors R_1 and R_2 are introduced to improve amplifier stability over the entire range of the V_{cont} . Here, C_0 is employed as an RF grounding capacitor in order to eliminate the feedback through C_{gs} and C_{gd} when the resistance of R_{ds} is high. In addition, a monolithic approach enhances the amplifier stability in spite of a considerably higher fre-

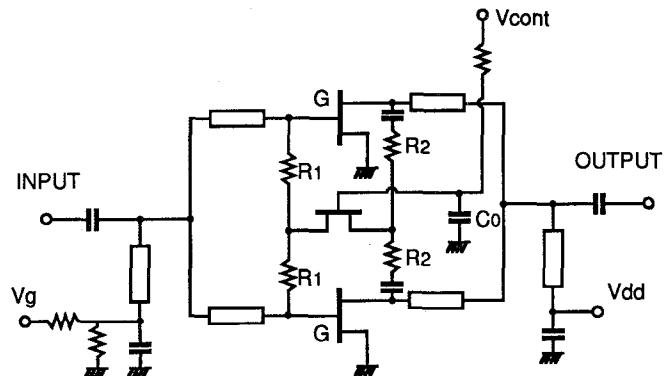


Fig. 3 Equivalent circuit for the 11-GHz monolithic low distortion variable gain amplifier.

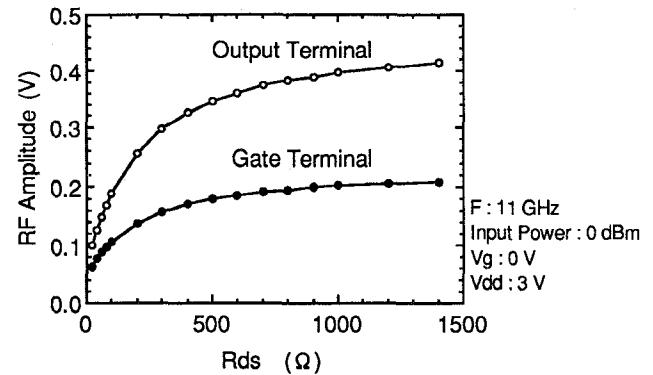


Fig. 4 Simulated RF amplitude at the output terminal and the gate terminals versus FET varistor resistance (R_{ds}).

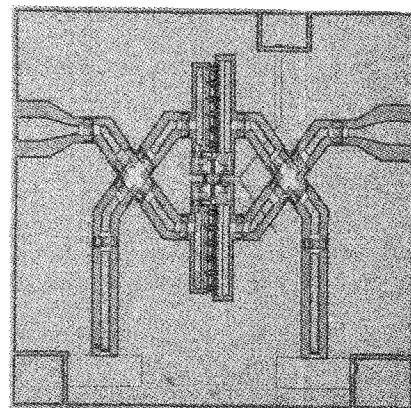


Fig. 5 Photograph of the monolithic VGA.
 Chip size is $1.5 \text{ mm} \times 1.5 \text{ mm}$.

quency (11-GHz) since it can reduce the influence of parasitic parameters in the feedback circuit.

Figure 4 shows the simulated RF amplitude at the output terminal and the gate-terminal versus R_{ds} . When R_{ds} changes smaller, the RF amplitude at the gate-terminal as well as that at the output terminal is suppressed as expected. Since the RF amplitude at the gate-terminal is reduced to 1/3 at the low resistance end of the FET varistor, this corresponds to about 10 dB decrease in input power level.

IV. Measured Performance

The fabricated monolithic VGA is shown in Fig. 5. The dimensions of the chip are 1.5 x 1.5 mm. Coplanar waveguides are employed as transmission lines.

The measured output power versus input power for two control voltages (V_{cont}) for the FET varistor is shown in Fig. 6. Control voltages of -2.0 V and 0 V correspond to the high-end and low-end of the FET varistor resistance, respectively. The VGA has a maximum linear gain of 10 dB under V_{cont} of -2 V and a gain control range of 15 dB. The 1 dB gain compression point for V_{cont} of 0 V occurs at an input power of 11 dBm while that for V_{cont} of -2 V occurs at an input power of 0 dBm. The third-order intermodulation distortion ratio (IMR) versus input power for two V_{cont} values is shown in Fig. 7. The figure indicates more than 30 dB IMR improvement for a V_{cont} of 0 V at the same input power.

The measured fundamental output power per tone and IMR versus V_{cont} is shown in Fig. 8. The VGA has an IMR of 62 dB at a V_{cont} of 0 V with 14 dB gain compression. The figure indicates more than 35 dB IMR improvement by strong negative feedback. For reference, the measured fundamental output power per tone and IMR versus V_{dd} for an 11-GHz MMIC amplifier is shown in Fig. 9. The amplifier has an IMR of 18 dB at a V_{dd} of 0 V with 17 dB gain compression. This figure shows the unacceptable IMR degradation in the compressed gain region.

Figure 10 shows the measured gain and noise figure versus V_{cont} of the VGA. When the gain changes from 11 to -4 dB, the noise figure changes from 5.8 dB to 10 dB. The variation of noise figure is only 4.2 dB in spite of a gain variation of 15 dB. Therefore, this VGA surpasses the amplifier composed of a variable attenuator and a small-signal amplifier unit.

V. Conclusion

A new variable gain amplifier has been proposed. The third-order intermodulation distortion ratio of this VGA is improved more than 40 dB compared with conventional variable gain amplifiers under compressed gain conditions as shown in Figs. 8 and 9. The VGA maintains a high linearity up to the high input power level using variable negative feedback. Therefore, by adjusting the control voltage, the VGA can operate as a linear limiter up to a considerably higher input power level as shown in Fig. 11. Here, the linear limiting power region will be extended by a cascade connection of the VGAs.

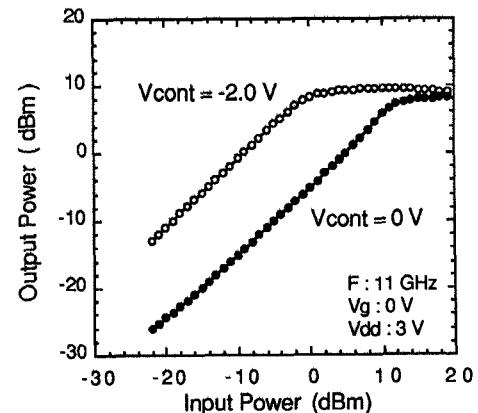


Fig. 6 Measured output power versus input power for the VGA.

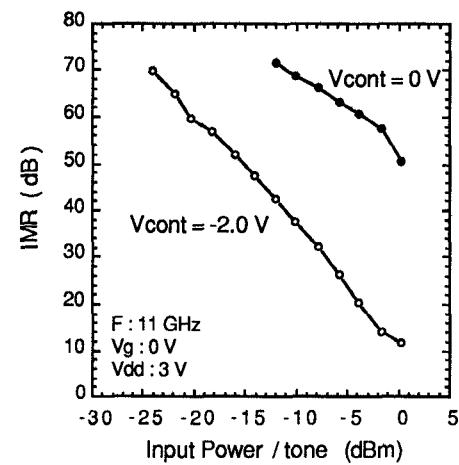


Fig. 7 Measured IMR versus input power (per tone) for the VGA. (IMR: Carrier to third-order intermodulation distortion ratio)

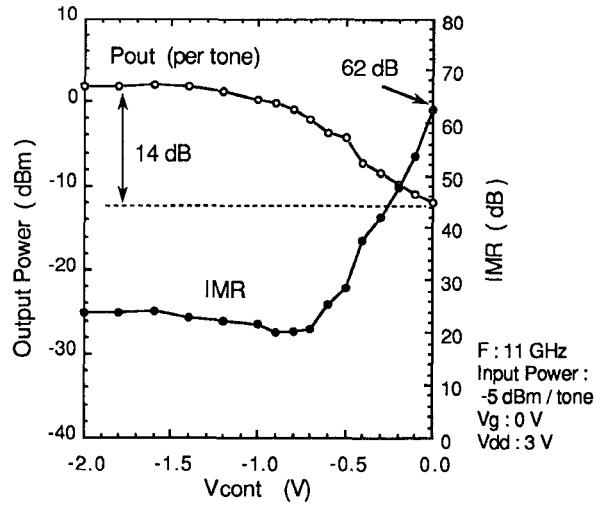


Fig. 8 Measured fundamental output power (per tone) and IMR versus V_{cont} for the VGA. The figure indicates 62 dB IMR with 14 dB gain compression at V_{cont} of 0V.

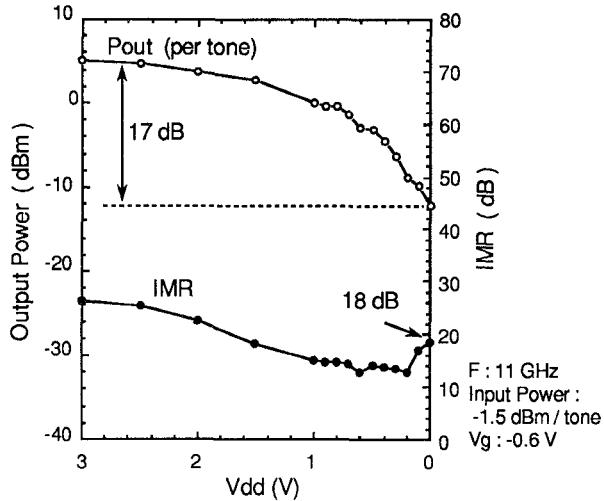


Fig. 9 Measured fundamental output power (per tone) and IMR versus V_{dd} for an 11-GHz MMIC amplifier. The figure indicates 18 dB IMR with 17 dB gain compression at V_{dd} of 0V.

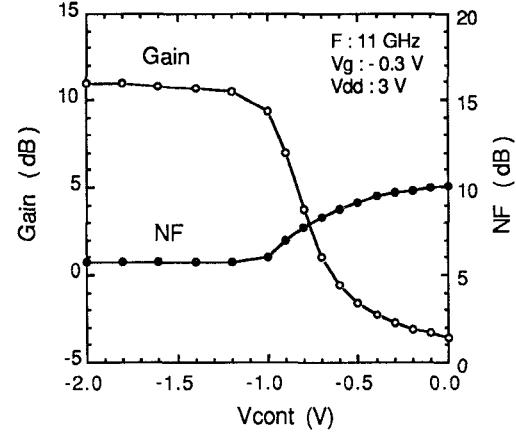


Fig. 10 Measured gain and noise figure versus V_{cont} for the VGA.

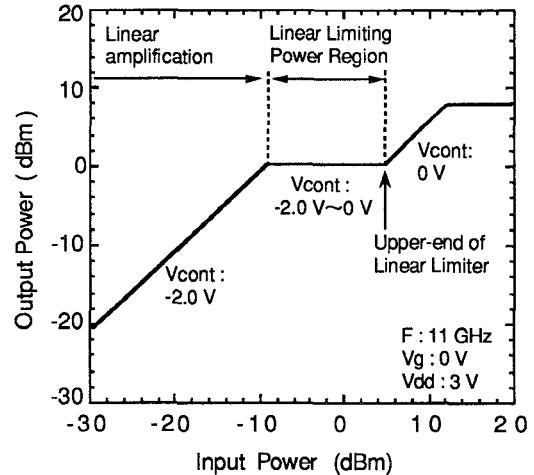


Fig. 11 Linear limiting power operation in the VGA. This limiter does not utilize the saturation region of the FET.

References

- [1] C. A. Liechti, "Performance of dual-gate GaAs MESFET's as gain controlled low-noise amplifiers and high-speed modulators", IEEE Trans. Microwave Theory Tech., vol.MTT-23, No.6, pp. 461-469, June 1975.
- [2] R. LaRue, S. Bandy and G. Zdasiuk, "A high gain, monolithic distributed amplifier using cascode active elements.", Digest 1986 IEEE microwave and Millimeter-Wave Monolithic Circuits Symposium, pp.23-26.
- [3] A. K. Ezzeddine, H. A. Hung and H. C. Huang, "An MMIC C-band FET feedback power amplifier", IEEE Trans. Microwave Theory Tech., vol.MTT-38, No.4, pp. 350-357, April 1990.